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Abstract—Although data confidentiality is the primary security objective in additive encrypted computation applications, such as the
aggregation of encrypted votes in electronic elections, ensuring the trustworthiness of data is equally important. And yet, integrity
protections are generally orthogonal to additive homomorphic encryption, which enables efficient encrypted computation, due to the
inherent malleability of homomorphic ciphertexts. Since additive homomorphic schemes are founded on modular arithmetic, our
framework extends residue numbering to support fast modular reductions and homomorphic syndromes for detecting random errors
inside homomorphic ALUs and data memories. In addition, our methodology detects malicious modifications of memory data, using
keyed syndromes and block cipher-based integrity trees, which allow preserving the homomorphism of ALU operations, while enforcing
non-malleability of memory data. Compared to traditional memory integrity protections, our tree-based syndrome generation and
updating is parallelizable for increased efficiency, while requiring a small Trusted Computing Base for secret key storage and block
cipher operations. Our evaluation shows more than 99.999% detection rate for random ALUs errors, as well as 100% detection rate of
single bit-flips and clustered multiple bit upsets, for a runtime overhead between 1.2% and 5.5%, and a small area penalty.

Index Terms—Encrypted Computation, Homomorphic Encryption, Memory Integrity, Mersenne Primes, Residue Numbering.
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1 INTRODUCTION

S INCE its discovery almost four decades ago, homomor-
phic encryption (HE) has enabled cryptographers to ma-

nipulate encrypted data without decrypting them [1]. One
important application of this remarkable property, is the
ability to delegate the processing of data, without sacrificing
their confidentiality [2]. Even though several encryption
algorithms exhibiting homomorphic properties have been
proposed in the past (e.g., [3], [4]), it wasn’t until 2009
that the academic interest in the area was reignited, fol-
lowing the discovery of fully homomorphic encryption [5].
Indeed, these HE advancements motivated several research
directions, and recent work in the area includes message
authenticators [6], electronic voting [7], quadratic func-
tion evaluation [8], multiparty computation [9], outsourced
cloud computing [10], encrypted computation [11], reusable
garbled circuits [12], encrypted data sorting [13], as well as
verifiable computation [14] [15].

Even though HE has many potential applications, as it is
evident from the previous examples, not all algorithms are
practical given the computational power of contemporary
computers. Indeed, all known fully homomorphic construc-
tions are not yet adequately efficient [16] [17] [18], and only
partially homomorphic schemes can be used in practical
applications (e.g., [17], [19]). In the latter case, the main
homomorphic operation is modular multiplication, for which
several efficient implementations have been proposed (e.g.,
[20], [21]). Moreover, considering the significance that cloud
computing and private outsourcing has today, our primary
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focus in this work will be encrypted computation applica-
tions (e.g., [22], [11]) that are based on additive HE and the
Paillier scheme [23]. Nevertheless, the primitives introduced
in this paper are applicable to many different computation
models that leverage modular multiplications (e.g., [13]).

In typical encrypted computation scenarios, the end
users first encrypt their data with HE, and then a (poten-
tially untrusted) third party process them using an appro-
priate branching program [24]. As soon as the program is
evaluated, the encrypted outputs are returned to the end
user for decryption. The homomorphic properties of the
underlying encryption scheme guarantee that decrypting
these received outputs would yield the correct result, as if
encryption was never a part of the computation (i.e., as if
the branching program was applied directly to unencrypted
data). That way, the confidentiality of data is preserved
while data processing is outsourced to another party. Still,
HE does not provide any explicit assurance on data integrity,
and as a result, any malicious or random modification to the
data entrusted to the third party may remain undetected by
the end user. Specifically, HE schemes are naturally malleable
in order to support meaningful manipulation of ciphertexts
[25], and as soon as malleability is inhibited, an encryption
scheme is no longer homomorphic (e.g., [26]). Thus, addi-
tional protection mechanisms are required to detect if the
integrity of homomorphic data has been compromised.

The aforementioned integrity concerns become more
evident, if we take into account that several encrypted com-
putation components, such as modular multiplication ALUs
and memory cells, are mapped directly to hardware circuits.
In this case, these components are susceptible to a wide
range of transient or permanent (random) faults that can
undermine the trustworthiness of encrypted computation
results. As demonstrated in [11], encrypted computation
pipelines share many similarities with standard processor
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architectures; yet, there exist key differences that render
efficient error detection a non-trivial problem. For exam-
ple, due to the special use of modular arithmetic in HE
operations, existing techniques such as Residue Numbering
Systems (RNS) [27] cannot be applied directly, as they even-
tually require revealing the secret factorization of cryptographic
moduli. Moreover, due to the large bit lengths of encrypted
arguments (typically, in the order of thousands), integrity
techniques like parity checks or ECC would incur prohibitive
overheads in terms of bit redundancy. Likewise, the applicabil-
ity of hash functions is also limited, as digesting very long
arguments incurs proportionally large performance delays;
at the same time, since hashes are non-homomorphic by na-
ture and cannot propagate through HE ALUs, they should
be recomputed after each intermediate ALU operation.

Besides the aforementioned random-fault scenarios, we
can also assume a broader threat model where adversaries
are allowed to actively manipulate encrypted memory cells.
In the latter case, all previous mitigations are rendered
ineffective, since adversaries may inject specially crafted
faults that are designed to circumvent random-fault detec-
tion techniques. For example, consider an adversary that
manages to replay an outdated value; in this case, random-
fault detection techniques would accept the replayed value
as valid again, which, however, can have devastating con-
sequences in the computation context. Hence, our goal in
this work is to protect encrypted computation both against
random faults, as well as active adversaries. Towards that
end, our observation is that, since many HE algorithms are
built on top of modular arithmetic, we can exploit their
intrinsic mathematical properties and create efficient error
detection primitives. These primitives are designed to be
compatible with common homomorphic operations in en-
crypted computation ALUs, and can prevent active adver-
saries from forging encrypted data under several scenarios,
while minimizing the size of required metadata. Overall, we
claim the following contributions:

a) Development of an efficient error detection method using
keyed syndromes (dubbed Exponential Syndromes), which
are homomorphic and can protect critical components
of encrypted computation, namely the encrypted data
memory and the homomorphic ALU, against malicious
and random faults respectively.

b) Construction of a non-malleable integrity tree structure
(dubbed Simon Tree), which leverages the lightweight
Simon block cipher [28], to enable concurrent detection
of malicious modifications in encrypted data memory,
such as replay and reordering attacks.

c) Design of a fast modular reduction algorithm that leverages
the properties of Mersenne number moduli [29], and
enables significant performance enhancements for the
proposed error detection framework.

The rest of the paper is organized as follows: in Sections 2
and 3 we elaborate on the assumed threat model and discuss
our extension of residue numbering to modular arithmetic.
Section 4 presents our fast modular reduction algorithm,
while Section 5 elaborates on our error detection method
for random faults. Additionally, in Section 6 we expand our
detection method to malicious errors, in line with our threat
model, and in Section 7 we present our experimental setup,

along with a discussion of our results using Monte Carlo
simulation and HDL implementation. Finally, we discuss
related work in Section 8, and our concluding remarks are
presented in Section 9.

2 THREAT MODEL

In this Section, we elaborate on the threat scenarios that we
consider possible, as well as the different attacks that we
want to protect against. Our target application is encrypted
computation that is based on additive HE (e.g., [22]), and
without loss of generality we assume that Paillier encryption
[23] is used as the underlying scheme1. In Paillier, the
modular multiplication of ciphertexts is homomorphic to
the modular addition of plaintexts, so hardware implemen-
tations of encrypted computation require modular multipli-
cation ALUs (e.g., [31] implements a Montgomery ALU).
Given that the typical size of each Paillier ciphertext is 2048
bits, these modular multiplication ALUs normally require
a large number of clock cycles to generate a result, while
occupying a substantial area on the silicon as well. Hence,
the probability of a transient or permanent fault affecting
the ALU outputs is non-negligible, and we consider this as
an integrity threat for encrypted computation results. We
further assume that such random faults can occur during
any step involved in the ALU result calculation.

In addition to the ALU, we also consider soft errors
in memory cells storing encrypted data. In particular, our
threat model considers Single Event Upsets (SEUs) and
Multiple Bit Upsets (MBUs) as in [32], where up to 4
consecutive bits are set or cleared together (i.e., clustered
faults). Such faults can affect the integrity of the encrypted
arguments while they remain in storage, which can yield
corrupted results as soon as the faulty values are loaded and
processed. In our model, we assume that the probability of
such soft errors is non-negligible, given that memory cells
occupy large areas on silicon. Conversely, we consider that
the probability of a soft error in a single register inside a
processing core is negligible.

Given the security implications of encrypted compu-
tation, it is also expected that active adversaries may be
motivated to tamper with the encrypted memory cells. In
effect, we assume that adversaries may have direct access to
the memory modules storing encrypted arguments (or can
leverage memory disclosures [33]), and have the capacity to
inject faults in a precise and judicious fashion to multiple
bits at the same time (e.g., [34]). Hence, we assume that
adversaries are able to bypass common linear or cyclic error-
detection codes, since these are designed to protect against
accidental data modifications (e.g., [35], [36]).

In general, our security objective is to authenticate the
contents of all memory cells with respect to any potential
corruption. Thus, our threat model also considers adver-
saries capable of modifying any data word of arbitrary
size. For example, adversaries can swap the contents of
memory locations (e.g., swap two 2048-bit arguments), copy
one memory value over another, reorder memory contents,

1. It should be noted that exponential ElGamal [30] is also additive
homomorphic, but decryptions require solving a discrete logarithm
problem. Moreover, the generalized Damgård-Jurik-Nielsen cryptosys-
tem [7] is also applicable.
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homomorphically generate new values using modular mul-
tiplication, as well as replay previously stored values to
the same or different memory location. In fact, powerful
adversaries are allowed to keep a “transcript” of how each
memory location is updated over time, and then replace the
most recent memory value with any outdated one. Likewise,
another extreme example would be to replace the entire
data memory contents with an earlier snapshot, or swap
the memory modules with different ones altogether.

Besides the encrypted memory, however, our threat
model does not allow active tampering with the proces-
sor pipeline (e.g., the program counter, the registers, the
ALU, etc.), as meaningful attacks are largely impractical.
Indeed, encrypted processors typically reside within dedi-
cated, tamper-proof ICs, to minimize the risk of probing or
modifying the processor’s internal state without detection.
Moreover, encrypted processors have randomized execution
states (i.e., program counters are updated in “spaghetti”
fashion due to encrypted addressing), while the use of
encrypted instruction arguments prevents meaningful anal-
ysis of encrypted binaries [11]. Consistent with the semi-
honest adversarial model of existing encrypted computation
applications, our threat model also excludes intentional
interference and denial-of-service attacks on the processor.

Evidently, in order to ensure the integrity of additive
encrypted computation under the aforementioned threat
assumptions, we need to combine cryptographic protections
with random fault detection methodologies. An important
observation, however, is that cryptographic integrity pro-
tections differ from random fault detection methods, in that
the former requires explicit knowledge of secret information
(i.e., secret keys) to generate and verify integrity metadata
(dubbed message authentication tags [25]). Use of secret keys is
mandatory, to ensure that only a holder of the keys can authen-
ticate of integrity tags, and prevent adversaries from forging
metadata for (chosen) non-authentic values or manipulating
existing ones without detection. Thus, our threat model
requires a Trusted Computing Base (TCB) within the en-
crypted computation processor, which cannot be accessed or
tampered with by any adversary, and is used generate and
verify integrity tags, as well as store secret keys for integrity.
Essentially, we require that hardware implementations of
encrypted computation cores incorporate an isolated secure
region that is responsible for keyed integrity operations, and
this will be our assumed root of trust2.

In the next Section, we elaborate on how residue num-
bering can be extended to support modular multiplication.

3 RESIDUE NUMBERING FOR MODULAR MULTI-
PLICATION

Residue numbering is a popular and powerful method for
fault detection in basic ALU operations [39]. It provides an
alternative representation of arithmetic values using weight-
less residues over a predefined “moduli set” [27], rather
than traditional digits of positional weight. This allows
parallelizable and carry-free addition and multiplication,
providing concurrent error detection for the ALU through

2. Note that there exist commercial processor designs also featuring
secure enclaves (e.g., [37], [38]).

adding or multiplying the residues of ALU inputs and
verifying equality with the residue of ALU outputs.

One of our goals in this work is to detect faults in
ALUs that perform modular multiplications, using the same
simple and efficient residue-based checks as in standard
ALUs. In residue numbering, however, modular multipli-
cation, division, and comparison are not straightforward,
and often require algorithms of excessive complexity [40].
Additionally, porting the traditional residue checks directly
to modular multiplication, would yield incorrect results.3

Recall that Paillier’s public parameterN is the product of
prime factors (see also Appendix A). A sufficient extension
for residue check correctness would be to use the prime
factors of the multiplication modulus N itself, also as the
“moduli set” of residue numbering. At the same time, when
modulus N is the product of only two large primes u
and v, revealing this factorization would completely break
Paillier’s security. Thus, to achieve both security and fault
detection using a simple residue check, our observation is
that we can add a third factor z to modulus N . As in the
multi-prime RSA scheme case [41], the third factor z in
Paillier must be a prime to ensure correctness, and at least u
and v should remain secret at all times.

The following paragraphs provide theoretical support
for extending residue numbering to modular multiplication.
Representation: Using residue numbering, any non-
negative integer can be represented uniquely by a set of
(typically smaller) residues, each corresponding to a specific
modulus. In more details, if a set of k positive moduli
{m1,m2, · · · ,mk} is chosen so that:

gcd(mi,mj) = 1, ∀i, j ∈ N+
≤k, i 6= j (1)

(i.e. all moduli are pairwise co-primes), a non-negative
integer X less than M =

∏
mi can be represented as a set

of k integers {x1, x2, · · · , xk} so that xi = X mod mi.
Uniqueness: The residue numbering representation is
unique due to the following theorem (based on the Chinese
Remainder Theorem).

Theorem 1. Given a set of relatively prime positive moduli
{m1,m2, · · · ,mk}, then for any integer X ∈ [0,M),
where M =

∏
mi for 1 ≤ i ≤ k, the set of residues

X mod mi is unique.

Proof: If the theorem did not hold, there would exist dis-
tinct integers A and B ∈ [0,M) with identical residue rep-
resentations. Thus, for all i we would have A = ci ·mi + ai,
B = di ·mi+bi, ci 6= di and ai = A mod mi = B mod mi =
bi, so A−B would be a multiple of mi:

A−B = (ci − di) ·mi, ∀i and ci 6= di. (2)

This also means that A − B is a multiple of
lcm(m1,m2, · · · ,mk), which equals M , since mi are pair-
wise co-primes. But if A−B is a multiple of M , then A and
B cannot be both in the interval [0,M) (contradiction).
Simple Arithmetic: In residue numbering, we can directly
apply carry-less addition, subtraction or multiplication on

3. For example, the modular multiplication of 20 times 30 modulo 9,
using RNS modulus 7, is ((20 ∗ 30) mod 9) mod 7 = (600 mod 9) mod
7 = 6 mod 7 = 6, which does not match (((20 mod 7) ∗ (30 mod
7)) mod 9) mod 7 = ((6 ∗ 2) mod 9) mod 7 = (12 mod 9) mod 7 = 3.
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the residues of two operands, and get the residue repre-
sentation corresponding to the result of that same opera-
tion. More formally, if {a1, a2, · · · , ak} and {b1, b2, · · · , bk}
are residue representations of integers A and B respec-
tively, then the residue representation {x1, x2, · · · , xk} of
X = (A�B) mod M would be xi = (ai�bi) mod mi, where
M =

∏
mi, and � is addition, subtraction or multiplication.

Nested Reductions: Based on the above, we now prove
another theorem that is applicable when we have nested
reductions (for example, when we need the residue repre-
sentation of encrypted values already reduced modulo N ).

Theorem 2. If z, N are positive integers with z dividing N ,
then for any non-negative integer X we have:

(X mod N) mod z = X mod z. (3)

Proof: Let a = X mod N and b = a mod z = (X mod
N) mod z. Then we have X = k · N + a for some integer
k and a = j · z + b for some integer j. Combining these
equalities, we have X = k ·N + j · z+ b. Since z divides N ,
there exists integer m so that N = m · z; thus:

X = k ·m · z + j · z + b = z · (k ·m+ j) + b. (4)

If we divide this quantity by z, we get b as the residue:

X mod z = (z · (k ·m+ j) + b) mod z = b. (5)

Since X mod z = b and (X mod N) mod z = b by def-
inition of b, we have (X mod N) mod z = X mod z, for
X ∈ Z≥0, and z,N ∈ Z+, when z divides N .
Modular Multiplication: Theorem 2 is essential in this
work, as we can use it to demonstrate the following Corol-
lary for ALUs performing modular multiplication on values
already reduced to a modulus. It should be noted that when
the divisibility conditions of the Corollary do not hold,
multiplication of the operand residues yields an incorrect
residue representation of the result.

Corollary 3. If z, N are positive integers and z divides N ,
then for any non-negative integers X and Y we have:

(X·Y mod N) mod z = ((X mod z)·(Y mod z)) mod z.

Proof: Using the result of Theorem 2, we have that:

(X · Y mod N) mod z = X · Y mod z. (6)

Let a = (X mod z), b = (Y mod z) and c = (X · Y mod z).
Then, there exist integers x and y so that X = (x ·z+a) and
Y = (y · z + b). Using the equalities for X and Y , we have:

X ·Y = (x·z+a)·(y·z+b) = x·y·z2+x·z·b+y·z·a+a·b, (7)

X · Y = z · (x · y · z + x · b+ y · a) + a · b. (8)

If we define integer w = x ·y ·z+x ·b+y ·a, the last equation
becomes X · Y = w · z + a · b, so:

X · Y mod z = (w · z + a · b) mod z = a · b mod z, (9)

using the fact that z divides z · w (i.e. z · w + a · b and a · b
are congruent modulo z). Combining Eq. 6 and Eq. 9, we get
the equality stated in the Corollary.

Algorithm 1 Fast Reduction Modulo a Mersenne Prime Mp

Input: X, p, where p is prime so that 2p − 1 is also prime
Output: Residue

1: procedure FASTMOD(X, p)
2: Mp ← 2p − 1
3: while X > 2 ·Mp − 1 do
4: Sum← 0
5: while X 6= 0 do
6: Sum← Sum+X&Mp . Add masked digit
7: X ← X � p . Shift right by p bits
8: X ← Sum . Recur for digits of Sum
9: if X ≥Mp then

10: X ← X −Mp

11: return Residue = X

4 FAST REDUCTION MODULO MERSENNE PRIMES

As it is evident from the discussion in the previous section,
a prerequisite for using residue numbering is the ability to
perform modular reductions of integers. Typically, modular
reductions using an arbitrary modulus may incur significant
overheads and undermine the overall system performance
(especially when 2048-bit long Paillier ciphertexts are pro-
vided), because integer division of the dividend with a
given divisor is typically required. Even though there exist
fast modulo implementations (e.g. [42]), their overhead is
still linear to the size of the dividend.

Our observation with regards to residue numbering for
modular multiplication is that the RNS modulus z does not
have to be random, other than the security requirement to be a
prime factor of the multiplication modulus N (as elaborated
in Section 3). Thus, judiciously selecting z to differ by 1 from
the next power of 2, would allow very efficient reductions
modulo z. Integers with this property are called Mersenne
primes [29], and are formally defined as Mp = 2p− 1, where
both Mp and p are primes.

As part of our contribution, we provide an algorithm
for fast modular reduction, when the reduction modulus is
a Mersenne prime 2p − 1. In this case, we can represent
the input using radix-2p digits and calculate the modular
reduction by summing those digits together, before reducing
the sum using modulus 2p − 1. This reduction (presented
in Alg. 1) is very efficient, since the execution overhead is
linear to the number of radix-2p digits in the input, rather
than the input bit length. The mathematical principle of the
algorithm is presented in the following theorem.

Theorem 4. Let p be a prime and Mp = 2p − 1 a Mersenne
prime. Then, for any positive radix-2p integer X in the
form:

X =

blog2p Xc∑
i=0

ai · (2p)i, (10)

where 2p is the numbering system base of the representa-
tion and ai are the digits of the number, the reduction of
X modulo Mp is:

X mod Mp =

blog2p Xc∑
i=0

ai

 mod Mp. (11)
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Proof: Let a′i = ai mod Mp and b′i = (2p)i mod Mp be
the reductions modulo Mp of each digit ai and each base
power (2p)i respectively. Then, by definition of congruence
[25], a′i and ai are congruent modulo Mp for each i, and the
same holds for each b′i and (2p)i as well. Due to congruence
properties, we can apply the standard rules of arithmetic
with respect to addition and multiplication over congruent
numbers. Thus, we can apply the reductions modulo Mp

distributively to each digit and base power, for each i ≥ 0:

(ai · (2p)i) mod Mp = (a′i · b′i) mod Mp. (12)

The same holds for each product in the sum of Eq. 10:

X mod Mp =

blog2p Xc∑
i=0

ai · (2p)i
 mod Mp =

blog2p Xc∑
i=0

(
ai · (2p)i

)
mod Mp

 mod Mp.

(13)

Likewise, we can distribute the reductions modulo Mp to
each (2p) factor comprising the base powers (2p)i, for each
i ≥ 0 so that the empty product for i = 0 is equal to 1:

(2p)i mod Mp =

(
i∏
1

(2p mod Mp)

)
mod Mp. (14)

Combining Eq. 12, 13 and 14, as well as the definitions of a′i
and b′i, we get the following expression for X mod Mp:blog2p Xc∑

i=0

(
a′i ·

i∏
1

(2p mod Mp)

) mod Mp. (15)

In the last expression, we can simplify the product term
considering that 2p mod Mp = (Mp + 1) mod Mp = 1,
by definition of Mp. Finally, using the definition of a′i, we
have (

∑
a′i) mod Mp = (

∑
(ai mod Mp)) mod Mp, which

equals (
∑
ai) mod Mp for each i, after applying standard

arithmetic rules. Thus, Eq. 15 can be simplified to Eq. 11.

5 ERROR DETECTION FOR RANDOM FAULTS

The first aspect in protecting the integrity of encrypted
computation, is ensuring the detection of errors caused by
random faults. Common causes for such faults include high-
energy neutrons from cosmic radiation, low-energy cosmic
neutron interactions with IC insulator layers, as well as
emission of alpha particles from IC packaging impurities
[43]. In the next paragraphs, we present our methodology
for efficiently detecting these random errors in ALUs used
for additive encrypted computation, as well as in encrypted
data memories. A high-level block diagram of our random
error detection method is also illustrated in Fig. 1.

5.1 Error Detection for Modular Multiplication ALU
In order to detect random errors at the output X of a
modular multiplication ALU operation, we will leverage the
residue numbering extensions presented in Section 3 and
build a homomorphic syndrome. We define our syndrome
to be the RNS residue sndr = X mod Mp, where Mp is
a predefined Mersenne prime modulus, and this reduction
can be computed efficiently using Alg. 1. As also mentioned

Fig. 1. Abstract view of an encrypted computation pipeline that features
a modular multiplication ALU with error detection and redundant equality
checks (along with additional TCB modules presented in Section 6). In
typical encrypted computation scenarios (e.g., private outsourcing to
a potentially untrusted party), users encrypt their programs and data
and upload them to the remote processor for homomorphic evaluation
(e.g., [11]); as soon as the encrypted outputs are computed, the user
downloads the results for decryption.

in Section 3, one important requirement for both security
and correctness is that the Paillier modulus N (where N2 is
used to reduce the multiplication of two ciphertexts [23]), is
the product of k > 2 prime numbers, where one of them is
Mersenne prime Mp.4 Without loss of generality, we assume
that N is the product of k = 3 primes, namely u, v and Mp,
and since the third factor of N is a Mersenne prime, we
are able to combine Alg. 1 and Eq. 3 to efficiently compute
the syndrome of the ALU output X . Recall that if the third
prime factor was not present, we would have to reveal either
u or v as the RNS modulus, which would break encryption
security; to prevent factorization of N , at least two primes
of adequate length should always remain secret.

Based on the definition of our homomorphic syndrome,
if we are given an ALU result X , as well as the correspond-
ing syndrome X mod Mp, we are able to verify if the result
correctly matches its syndrome, and assert that no random
error has happened (with high probability). This, however,
would have not been feasible, if we couldn’t compute the
syndrome of the result given the syndromes of the ALU
inputs. Hence, if A and B are the two ALU inputs and X
is the ALU output, we can use Corollary 3 to verify the
following condition for fault-free results:

X mod Mp = (Asndr ·Bsndr) mod Mp, (16)

where Asndr = A mod Mp and Bsndr = B mod Mp. In this
case, if we know A, B, Asndr and Bsndr before each ALU
operation, we can use Eq. 16 to verify the correctness of X ;
this error detection procedure is also summarized in Alg.
2. Typically, the initial values for all syndromes can be pre-
computed offline, stored in the encrypted memory along
with each corresponding ciphertext, and updated after each

4. In this case, the encryption scheme is naturally extended using the
product of all primes as the public parameter N , and Carmichael’s λ
function of N as the private parameter.
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Algorithm 2 Modular Multiplication with Error Detection
Input: A,B,N,Mp so that Mp divides N
Output: (Multiplication Result, Fault Status)

1: procedure MODMUL-ED-ALU(A,B,N,Mp)
2: X ← A ·B mod N2

3: Xsndr ← X mod Mp

4: Asndr ← A mod Mp . For JIT syndromes
5: Bsndr ← B mod Mp . For JIT syndromes
6: tmp← Asndr ·Bsndr mod Mp . Parallelizable step
7: if tmp = Xsndr then . Redundant equality check
8: return (X,Correct)
9: else

10: return (⊥, Faulty)

homomorphic operation. As it will become evident in the
next subsection, storing syndromes in memory would also
enable us perform efficient memory error detection. Other-
wise, in case we require error detection only for the ALU,
syndromes can be computed Just-In-Time (JIT), immediately
before the arguments enter the ALU for processing (i.e., no
extra memory storage is necessary).

Notably, Eq. 16 requires that a second ALU operation
is necessary to compute the homomorphic operation on
the syndromes themselves. For that matter, a separate ALU
module is necessary, since the primary ALU hardware is
used to multiply inputs A and B (which have different sizes
from Asndr and Bsndr), and reduce the result using the
Paillier modulus (i.e., not Mp). Having different modules
also allows both ALU operations (Steps 2 and 6 in Alg. 2)
to be performed in parallel, and the cost of syndrome multi-
plication can be masked by the homomorphic operation on
A and B. For syndrome verification, however, the computa-
tion of Xsndr in Step 3 of Alg. 2 depends on the calculation
of X in Step 2. Alternatively, if the primary ALU is part of a
pipeline, it is also possible to start performing the reduction
of Step 3 in parallel with the next ALU operation, and “flush”
the pipeline in case a fault is ultimately detected.

In general, if the equality in Step 7 of Alg. 2 does not
hold, then an error may have occurred either during syn-
drome multiplication (i.e., in the primary or the secondary
ALU or both), or during equality checking, or during syn-
drome computation (i.e., in the Mersenne reduction unit).
Assuming that the error was caused by transient faults, the
exception can be handled by repeating the homomorphic
operation using freshly-computed syndromes; likewise, to
prevent undetected errors during equality checking, redun-
dant checks should be employed. Moreover, even though
this methodology is capable of detecting an arbitrary num-
ber of random errors in the primary ALU output, it is still
possible that the syndrome Xsndr of a faulty output X ′ is
equal to the expected syndrome Asndr ·Bsndr mod Mp (e.g.,
when X ′ = X + k ·Mp for some integer k 6= 0). In this case,
the incorrect ALU output collides with the correct one, and
the fault escapes.

In order for our error detection method to be efficient,
the bit length of Mp needs to be much smaller compared
to the bit length of N , typically by one or two orders
of magnitude. Since the selection of prime modulus Mp

determines the bit length of each homomorphic syndrome,

and the secondary ALU performs a modular multiplication
of two syndromes (Eq. 16), that bit length determines the
size and computation overhead for the second ALU. As it
will become evident in our experimental evaluation (Section
7), it is sufficient to select Mersenne primes M19 or M31,
to achieve fault coverage above 99.999%. In general, the
probability of an escaped fault due to collisions is Mp

−1. If
Mp is too small, this probability increases, while increasing
the size of Mp would require extra memory storage when
syndromes are pre-computed and stored along with the
operands, as previously mentioned. It’s worth noticing that
an ALU performing modular multiplication of two 19-bit
or 31-bit syndromes, would require 22 or 34 clock cycles
respectively, while the multiplication of two 2048-bit cipher-
texts requires 2051 cycles [20], [44]; in general, this overhead
is a linear function of the bit length of the arguments.

5.2 Error Detection for Encrypted Memories
In encrypted computation applications, instruction argu-
ments and encrypted data are typically stored inside mem-
ory modules during processing. As these modules are con-
tinuously vulnerable to soft errors, it is important to be able
to detect when such errors occur, so that further corrective
actions can be taken (e.g., reloading the affected values from
permanent storage or redundant memories). One popular
solution to the problem is to use Error Correcting Code (ECC)
memories (e.g., [45]), that can tolerate a limited number of
faults in each data word. One drawback of such solutions,
however, is the fact that they incur non-negligible area and
delay overheads, as dedicated ECC circuits are required.
Moreover, the number of required ECC parity bits increases
logarithmically with the argument bit size, so, for encrypted
arguments sizes of up to 2048 bits each, these approaches
do not scale adequately.

As discussed in the previous section, one option to
obtain the syndrome of an ALU argument is to pre-compute
and store it in memory along with the corresponding cipher-
text, forming a (ciphertext, syndrome) pair. In our frame-
work, this also enables the detection of random memory
errors without any additional cost: At runtime, as soon as each
ciphertext is loaded from memory, we also load its pre-
computed syndrome; then, we can verify the ciphertext’s
integrity by computing its residue modulo Mp (using Alg.
1), and comparing the result with the existing syndrome. If
a random error has occurred either in the syndrome or in
the ciphertext, it can be correctly detected with probability
1−Mp

−1, by checking that the residue and the syndrome do
not match. This boundary considers reduction errors as well
as escapes due to collisions, and assumes redundancy in all
comparisons, to avoid equality errors. Conversely, if no er-
ror has occurred in memory, any mismatch would be a false
positive, which is attributed to residue computation errors,
and is treated like a regular error, as it is indistinguishable
from a true positive. In addition, since modular multiplica-
tions in the context of encrypted computation are at least 18
times slower compared to the fast Mersenne reductions (as
presented in Section 7.2), these memory integrity checks can
be performed by time-multiplexing existing reduction mod-
ules, and mask their overhead by running the reductions in
parallel to the primary ALU operation (i.e. achieve delay-free
error detection).
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5.3 Complete Coverage for Single Memory Bit-Flips

One important observation is that, depending on the nature
and number of memory errors, our residue based detection
method can offer a fault coverage higher than the aforemen-
tioned probabilistic estimates of 1 − Mp

−1. Specifically, if
we consider single bit-flips, the coverage would always be
100%, as it is algebraically impossible to have two congruent
values (modulo Mp) with Hamming distance equal to 1. As-
suming that X is an original memory value and Y = X⊕2j

is a faulty value after a single bit-flip on X at bit position j,
the corresponding single bit error should be masked if and
only if:

|X − Y | = k ·Mp, for some k ∈ Z>0, (17)

which is a congruence relation between X and Y . In our
case, however, we claim that Eq. 17 cannot be true, since it
holds for xi ∈ [0, 1] and j ≥ 0:

X =

blog2Xc∑
i=0

xi · 2i ≡ xj · 2j +

blog2Xc∑
i=0,i6=j

xi · 2i, (18)

Y = X ⊕ 2j = (1− xj) · 2j +

blog2Xc∑
i=0,i6=j

xi · 2i, (19)

|X − Y | =
∣∣xj · 2j − (1− xj) · 2j

∣∣ = 2j . (20)

Therefore, in order to have a masked single bit flip, there
should exist integers k > 0 and j ≥ 0 so that 2j = k ·Mp.
In the trivial case where j = 0, the equation does not hold
for any k > 0, as 1 cannot have Mp as a factor. Similarly,
if j > 0, by the fundamental theorem of arithmetic [46], 2j

should have a unique prime factorization; since the latter is a
power of 2, it cannot have prime Mp as a factor. As a result,
the fault coverage for single bit flips is exactly 100%.
Clustered faults: The same coverage can also be shown
algebraically for clustered faults of up to 4 bits (as in [32]),
where the unique factors of the absolute difference in Eq. 20
are primes 2, 3, 5 and/or 7, and thus any Mp with p > 3
(i.e., any Mp other than M2 = 3 and M3 = 7) is not a factor
either.

6 ERROR DETECTION AGAINST ACTIVE ATTACKS

As elaborated in our threat model, besides random er-
rors in the ALU, our objective is to also detect malicious
modifications in encrypted memory contents. Following the
discussion of Section 2, it is necessary to use secret keys to
authorize generation and verification of message authenti-
cation tags for each memory value. These operations should
be performed inside a tamper-proof TCB, inaccessible by ad-
versaries, where the secret keys are stored as well. Moreover,
our objective is to maintain compatibility with the afore-
mentioned ALU error detection method (Section 5.1) and
avoid using an entirely different scheme on top of our RNS-
based approach, as this allows reuse of hardware modules
and conserves memory. Thus, the proposed tags should be
homomorphic and be able to propagate correctly through
modular multiplication operations. Overall, we introduce:

1) Exponential Syndromes: a keyed construction that ex-
tends the original (RNS-based) syndromes and allows

detecting malicious and random errors in the encrypted
memory and the ALU respectively; the construction
is selectively homomorphic through the use of pseu-
dorandom “blinding” (discussed in Section 6.1.2), and
enforces knowledge of secret keys for syndrome gener-
ation and verification.

2) Simon Trees: a non-malleable tree construction, which
leverages the Simon lightweight block cipher [28], and
can reduce the integrity of all exponential syndromes
to the integrity of a single value (i.e., the tree root),
effectively creating an “integrity tree”; this root is stored
within the TCB, where it is protected against modifica-
tion and eavesdropping.

6.1 Exponential Syndromes Against Memory Attacks

Our starting point for the design of exponential syndromes
(esndr), is the original sndr construction described in Sec-
tion 5.1. There, we defined Xsndr = X mod Mp, where X
is a Paillier ciphertext and Mp is a Mersenne prime, and
highlighted the homomorphic property of that construc-
tion when it propagates through a modular multiplication
ALU. In order to maintain this property, while adding
the requirement of a secret key Kesndr in the generation
and verification of the syndrome, we define Xesndr =
(Xsndr)

Kesndr mod Mp. Due to the multiplicative property
of the powers of products, we are then able to multiply
exponential syndromes homomorphically. Specifically, if A
and B are ciphertexts, and X = A ·B mod N is the modular
multiplication ALU output for these inputs, we have:

Aesndr ·Besndr = (X mod Mp)
Kesndr mod Mp, (21)

where we applied the result of Corollary 3 as in Eq. 16,
and raised each side of the equation to power Kesndr before
reducing to modulus Mp.

By construction, exponential syndromes remain back-
wards compatible with the ALU random error detection
procedure described in Alg. 2, while due to the modular
exponentiation step, it is intractable to generate or verify
them without access to the secret exponent Kesndr. More
importantly, exponential syndromes can detect malicious
errors in encrypted memories, which is a limitation of the
original syndromes. Specifically, if exponential syndromes
are stored in memory alongside ciphertexts (similar to our
detection method in Section 5.2), only the TCB can verify
the integrity of a ciphertext X , by raising the Mp residue of
X to secret exponent Kesndr, before reducing it to Mp and
comparing the result with the stored syndrome.

Without invoking the TCB and the secret exponent (as
was the case with the original syndromes), any adversary
could maliciously modify a ciphertextX intoX ′ and simply
replace the stored syndrome with X ′ mod Mp. The latter
is prevented in this construction, as adversaries do not
know which exponent to use while forging the syndrome
for their chosen X ′. In addition, to prevent guessing the
secret exponent, Kesndr should be randomly selected from
an adequately large key space, and different exponents must
be shared between the TCB and the user across different
sessions.
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Fig. 2. Distribution of the generators for each cyclic subgroup of Z∗
Mp

, for
p ∈ [19, 31, 61, 89]. For each divisor d of the order of Z∗

Mp
, there exists

a unique subgroup of d elements, and φ(d) of them are its generators.
Since φ(Mp) is smooth and has many divisors, solving the GDLP can
be easy: even though there are many discrete logarithm bases Xsndr

(i.e., generators) for which the search space for exponents Kesndr (i.e.,
their order) is large, we also observe many generators with small orders.
For the GDLP to be hard, all generators should have maximum order.

6.1.1 Attack Vectors against Exponential Syndromes
Even though adversaries can no longer selectively forge
a syndrome for a maliciously modified ciphertext X ′,
our baseline construction requires additional protections to
thwart other known attack vectors, as elaborated in the
following paragraphs.
Exponent Recovery: In an effort to recover the secret ex-
ponent Kesndr, adversaries may attempt to analyze the
relationship between a ciphertext and its exponential syn-
drome. In effect, an adversary may exploit the knowledge of
X , Mp and (X mod Mp)

Kesndr mod Mp, to predict Kesndr.
Nevertheless, this attack requires solving a generalized dis-
crete logarithm problem (GDLP) [47], which recovers the
exponent to which Xsndr should be raised to equal Xesndr.
In general, depending on the factorization of the order of
a cyclic group, solving the GDLP can be computationally
intractable5; however, if the group order is a smooth integer
rather than a prime, solving the GDLP is not intractable
(e.g., using the Pohlig-Hellman algorithm) [47].

An important observation is that, for relatively small
Mersenne primes Mp, the cyclic group Z∗Mp

has order
φ(Mp) = Mp−1, which could be a smooth integer, depend-
ing on the selection ofMp. Specifically, there are cases where
the group order Mp − 1 can be factorized to the ei powers
of several small primes qi (i.e., Mp − 1 =

∏
i q
ei
i ), where the

square root √qj of the largest prime factor qj sets an upper
bound to the discrete logarithm computation cost using
the Pohlig-Hellman algorithm [47].6 As illustrated in Fig. 2,
there exist Mersenne primes Mp so that for several discrete
logarithm bases Xsndr , the search space for potential secret
exponents Kesndr is reduced.

Evidently, if relatively small Mersenne prime moduli
are chosen (such as M31 or M61, which helps reducing
the memory overhead of storing exponential syndromes),
adversaries may be able to solve the GDLP, recover Kesndr

and forge syndromes for maliciously crafted ciphertexts.
To launch this attack, however, adversaries need to know

5. Since Mp is a prime, the group Z∗
Mp

and the subgroups generated
by different 〈Xsndr〉 are cyclic. For each divisor d of the group’s order
φ(Mp), there is exactly one subgroup of order d that has exactly
φ(d) different generators, where φ is Euler’s Totient function [47]. If all
generators have maximum order, the GDLP is hard.

6. E.g., φ(M31) = 2·32 ·7·11·31·151·331, while φ(M61) = 2·32 ·52 ·7·
11·13·31·41·61·151·331·1321. The factorization of the order d of each
cyclic subgroup with φ(d) elements, is a subset of these prime powers.

the base Xsndr of the discrete logarithm, as well as the
exponential syndrome itself (i.e., Xesndr); if either one of
these is not available to the adversary, it would no longer
be possible to solve the GDLP. Our observation is that
exponential syndromes can be blinded with a pseudorandom
value (making them indistinguishable from random values),
before being stored alongside ciphertexts. In this case, even
if adversaries attempt to analyze them, the blinding step
would render them unusable. Moreover, it is possible to
construct an efficient and reversible blinding transformation
upon each Xesndr , so that only the TCB can recover the
actual syndrome from the blinded value Xbsndr.
Syndrome Homomorphism: Another potential attack vec-
tor that justifies blinding is the malleability of exponential
syndromes (Eq. 21). Even though homomorphism is nec-
essary to enable correct propagation of syndromes while
ciphertexts are processed in the ALU, it can also be exploited
by active attackers. Specifically, if exponential syndromes
remain unblinded while at rest in encrypted memories, it is
possible to generate valid tags for new ciphertexts (related
to those already stored in memory).7 Hence, we require that
homomorphism is respectively “disabled” or “enabled”,
when the syndromes are stored in memory (outside the
TCB) or processed by the secondary ALU (inside the TCB).
This selective operation can be implemented by applying an
efficient exclusive-or function between the syndrome and a
pseudorandom value C ; in this case, we define a blinded
syndrome as Xbsndr = Xesndr ⊕ C, which can be reversed.
Reduction Commutativity: Our RNS-based methodology
leverages Mersenne prime moduli to efficiently digest long
ciphertexts into compact syndromes (Alg. 1). In effect, re-
ducing an input ciphertext X to modulus Mp = 2p − 1
requires adding together all radix-2p digits of X ; however,
since addition is a commutative operation, the relative order
of these digits is not preserved and any permutation would
eventually yield the same residue Xesndr. Thus, even with-
out knowledge of Kesndr, an active adversary may find a
ciphertext X ′ congruent to X (i.e., find a “second preimage”
[47]) and existentially forge the pair (X ′, Xesndr). Moreover,
we cannot simply replace our Mersenne reduction with a
non-commutative, collision resistant function (e.g., SHA-
256), as the homomorphism of Eq. 21 will no longer hold,
invalidating our ALU error detection method.

In contrast, if we blind Xesndr with a pseudorandom
value C that is also a collision resistant digest of the input
ciphertext X , then, even if X ′ is congruent to X , the
corresponding blinded syndromes Xbsndr = Xesndr ⊕ C
and X ′bsndr = Xesndr ⊕ C ′ will be different (except with
negligible probability, attributed to the birthday problem [25]).
Notably, collision resistance is a vital requirement for C
digests to prevent forgeries: if adversaries can find X and
X ′ so that Xesndr = X ′esndr and C = C ′, the corresponding
blinded syndromes would also collide. Furthermore, we
require that C offers computation resistance [47], so it should
be infeasible to compute C from X without access to a
secret key. The latter is necessary to prevent adversaries
from extracting Xesndr from the blinded value using the
expression Xbsndr⊕C, as well as finding a valid C ′ to forge

7. For example, after seeing an existing pair (X,Xesndr), adversaries
can forge a valid pair (Xd, Xd

esndr) for some integer d ∈ ZN .
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Algorithm 3 Syndrome Protection with Blinding
Input: X = (x`, . . . , x2, x1),Kmsk,Kesndr,KSimon,Mp, ctr
Output: Blinded Syndrome Xbsndr

1: procedure BLINDING(X,Kmsk,Kesndr,KSimon,Mp)
2: Xsndr ← X mod Mp

3: Xmsk ← UKmsk
(x`, . . . , x2, x1) . Parallelizable step

4: Xesndr ← (Xsndr)
Kesndr mod Mp

5: C ← E(KSimon, ctr)⊕Xmsk . Parallelizable step
6: return Xbsndr = Xesndr ⊕ (C & Mp) . Keep p LSBs

X ′bsndr when X ′ is congruent to X . Besides, since com-
puting Xesndr requires knowledge of Kesndr, adversaries
cannot extract C from Xbsndr either.

6.1.2 Protecting Exponential Syndromes with Blinding

Based on the previous analysis, to protect our exponential
syndromes against potential attack vectors (such as one-
wayness, malleability and second-preimage threats), we
blind each Xesndr with a pseudorandom value C that is
bound to the corresponding ciphertext X via a collision
resistant digest. Specifically, given a computation resistant
function Uk(X) that requires k to generate a collision resis-
tant digest of X , we can compute C as the encryption of
the output of Uk. Encrypting each digest using a cipher that
is secure against chosen plaintext attacks (CPA-secure) [25] is
beneficial, since it transforms the digest to a pseudorandom
value (a requirement for C), and prevents adversaries from
detecting if a collision has occurred in the digests (due to
CPA-security). Preventing collision detection is essential in
case finding a collision allows bypassing the computation
resistance of Uk (e.g., recovering the secret key).

In this work, we encrypt each Uk output using the Simon
block cipher in counter mode, which is a CPA-secure mode of
operation [25]. Moreover, if X is represented as coefficients
vector (x`, . . . , x2, x1) ∈ Z`Mp

and k ∈ ZMp
, we can define a

family of functions Uk(X) as a degree-` polynomial modulo
Mp evaluated at point k:

Uk(X) = x1k
` + x2k

`−1 + · · ·+ x`k mod Mp. (22)

This family extends the original Carter and Wegman
construction to `-block inputs [48], and offers both col-
lision and computation resistance. Specifically, Uk is a
ε-almost-∆-universal (ε-A∆U) family, with collision prob-
ability less than ε = `/Mp for any pair of distinct inputs
[49]. In addition, since a secret key k is used to select a
random member of the family, and Uk outputs are encrypted
with a CPA-secure cipher (to prevent finding the polynomial
roots), the construction also offers computation resistance.
Notably, the encrypted Uk construction is computationally
unforgeable, since it follows the common digest-then-mask
paradigm introduced in [50].

As presented in Alg. 3, we compute the blinded syn-
drome of X as the exclusive-or between Xesndr and
the (ctr-mode) Simon encryption of digest Xmsk =
UKmsk

(x`, . . . , x2, x1), whereX is split in ` blocks andKmsk

is a secret key. Each such block is p− 1 bits long (recall that
xi ∈ ZMp ), while, to ensure CPA security, each encryption

Algorithm 4 Parallel Modular Exponentiation Ladder
Input: Xsndr,Kesndr,Mp

Output: Exponential Syndrome Xesndr

1: procedure MODEXP(Xsndr,Kesndr,Mp)
2: W1 ← Xsndr, W0 ← 1 . Initialize temp variables
3: for each b in Kesndr do . Left to right bit parsing
4: W(1−b) ←W1 ·W0 mod Mp

5: Wb ←Wb ·Wb mod Mp . Parallelizable step
6: return Xesndr = W0

Algorithm 5 Universal Digest using a Polynomial mod Mp

Input: Kmsk, X, p so that p and 2p − 1 are primes
Output: Universal Digest U

1: procedure POLYDIGEST(Kmsk, X, p)
2: Mp ← 2p − 1, U ← X & (Mp � 1)
3: while X 6= 0 do . Loop ` times
4: X ← X � (p− 1) . Shift right by (p− 1) bits
5: blk ← X & (Mp � 1) . Mask p− 1 LSBs
6: U ← blk + U ·Kmsk mod Mp . Horner’s rule
7: return U

of Xmsk should use a unique ctr value.8 The computed
blinded syndrome and the associated ctr value can be safely
stored in memory, as adversaries cannot use Xbsndr to forge
new syndromes of chosen messages, or recover Xesndr. The
TCB is responsible for protecting the corresponding secret
keys, as well as executing Alg. 3 to generate or verify
syndromes. The TCB may also compute C to selectively
unblind Xbsndr and recover Xesndr = Xbsndr ⊕ C, using
the corresponding ctr value and Steps 3 & 5 of Alg. 3.

6.1.3 Implementation Remarks
The hardware implementation of blinded exponential syn-
dromes requires careful design, in order to optimize their
computation as much as possible. In addition to the require-
ment for fast Mersenne reduction modules (which was the
only requirement for our original syndromes Xsndr), in this
case we also require modular exponentiation and blinding
modules. Since the computation of blinded syndromes is a
sensitive operation, and secret keys are involved, the afore-
mentioned modules should be located exclusively within
the boundaries of our TCB. Even though adversaries cannot
tamper with the TCB in our threat model, our goal is to
minimize the risk of side channels, especially in the case of
modular exponentiation, where simple square and multiply
algorithms can reveal the bits of the secret exponent.

With respect to exponentiation, we adapt the Mont-
gomery powering ladder algorithm, which is designed to
eliminate conditional branches based on the bits of the ex-
ponent, and allows natural parallelization of the two mod-
ular multiplications in each step [51]. In more details, our
adapted algorithm iterates over all the bits of the exponent
Kesndr, and in each iteration employs two regular multipli-
ers in parallel, before reducing the computed products to
Mersenne modulus Mp. Trading hardware redundancy for
performance, this parallelism translates to a time overhead

8. Since our construction also uses Xesndr (which is pseudorandom),
our blinded syndromes remain robust even in light of ctr reuse, as long
as Xesndr does not simultaneously collide as well.
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Fig. 3. Block diagram of our blinding process for exponential syndromes.

of one p-by-p bit multiplication, as well as up to three p-by-p
bit additions (needed to reduce a 2p-bit product using Alg.
1), for each bit of the exponent Kesndr; Alg. 4 presents our
adapted exponentiation procedure. Likewise, as described
in Alg. 5, our ε-A∆U polynomial digest can be implemented
using only one p-by-p bit multiplication, and two to five
p-by-p bit additions (subject to Mp reductions) for each
(p−1)-bit block, by leveraging Horner’s rule for computing
polynomials. This observation enables significantly fast di-
gesting, considering that argument sizes are in the order of
thousands of bits.

Another observation is that we can reduce the mem-
ory storage requirements for ctr values, given that ctr-
mode encryption requires storing each used counter value
along with the corresponding CPA-secure ciphertext [25].
Specifically, instead of having a global counter state (where
the most recent ctr value is maintained inside the TCB),
we can decentralize the counter state to many independent
counter values, each paired with the physical address addr
of a blinded syndrome. The latter allows to store only the
local ctraddr values, which remain unique for each addr
and are shorter than global ctr values. Indeed, if we set
ctr = (addr||00 . . . 0||ctraddr) in Step 5 of Alg. 3, it suffices
to store only the ctraddr portion in encrypted memory
(along withX andXbsndr), as the corresponding addr prefix
is available to the TCB.9 Each ctraddr represents the most
recent counter value for the corresponding Xbsndr, and is
incremented when the syndrome is updated; any unau-
thorized modification or replaying is immediately detected
during Xbsndr verification.

Additionally, by construction of the blinding procedure
in Alg. 3, the inputs to the Simon encryption in Step 5,
are independent of the outputs in the previous Step 4.
Hence, the Simon encryption module can run in parallel
to the exponentiation ladder, and their respective results are
eventually combined using an XOR operation.10 Parallelism
can also be leveraged in Steps 2 and 3 of Alg. 3, which are
also independent, assuming that redundant fast Mersenne
reduction modules are available. A high level block diagram
of our blinding process is presented in Fig. 3.
Key Management & Derivation: As presented in Alg. 3
and elaborated in Section 6.1.2, our blinding construction

9. This compound ctr is globally unique, as each syndrome is stored
at an immutable addr, for which ctraddr is unique. The maximum
ctraddr , which controls how many times each Xbsndr can be updated
at runtime, depends on the bitsize of addr and the Simon block size.

10. The block size of the selected Simon variant should be larger than
the bitsize of modulus Mp; since this cipher family supports block sizes
up to 128 bits, the largest compatible modulus is M127.

TABLE 1
Summary of independent secret keys for different TCB primitives

Key Size (bits) Finite Group Associated Primitive
Kesndr 61, 107 ZM61

, ZM107
Modular exponentiation

Kmsk 61, 107 ZM61
, ZM107

Universal digest
KSimon 96, 128 F296 , F2128 Simon encryption

comprises an exponentiation ladder (Alg. 4), a universal
digest (Alg. 5) and the Simon encryption algorithm E .
Following the basic principle of security and cryptography
that emphasizes the need for different keys across instances
of different primitives [25], our construction assumes three
independent secret keys (summarized in Table 1): Kesndr,
Kmsk and KSimon . Different instantiations of the system
across different users, as well as different encrypted com-
putation sessions of the same user, should use different
keys. These unique session keys are only shared between
the program owner (i.e., the user) and the respective TCB of
the system hosting the encrypted computation session, and
are established before the encrypted program is uploaded
(for example, using a Diffie-Hellman key agreement). Alter-
natively, users may opt to exchange only a master key that
is then securely expanded to the three aforementioned keys
through a key derivation function [47].

6.2 Simon Trees Against Advanced Replay Attacks

As elaborated in the previous paragraphs, our blinded
syndrome construction provides integrity protection against
forgery, since adversaries are unable to generate syn-
dromes for chosen ciphertexts, without knowledge of the
secret keys. Moreover, if ctr values include immutable
physical addresses, adversaries will not be able falsify a
(X,Xbsndr, ctraddr) tuple by copying another valid 3-tuple
from a neighboring location, as the applied addr value is not
under their control. Nonetheless, binding counter values to
physical addresses only prevents duplication, but does not
prevent adversaries from replaying an outdated instance of a
3-tuple from that same address. Hence, we need to ensure
that the stored syndromes are the most recent ones, which
consequently guarantees (after verifying the syndromes)
that the corresponding ciphertexts and counters are also the
most recent. In effect, we must verify both the integrity and
freshness of all syndromes as a group.

One simple approach to verify the integrity of all syn-
dromes could be to treat their concatenation as a very long
ciphertext, generate the blinded syndrome for it, and store
that syndrome in the TCB. That way, verification of all
syndromes is reduced to verifying the integrity of a single
syndrome. Nevertheless, this approach incurs prohibitive
overheads, as the associated cost is linear to the size of the
entire memory; in fact, we would have to read all syndromes
just to verify one of them. To overcome this limitation, we
propose to use a hierarchical structure in the form of a tree,
which makes the verification cost logarithmic to the size of
the memory.

6.2.1 Description of our Replay Resistant Construction
As illustrated in Alg. 6, our “Simon Tree” construction em-
ploys the encryption algorithm E of the homonymous block
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cipher family, as well as fast Mersenne reductions (Alg. 1),
to securely digest multiple blinded syndromes into a parent
syndrome at each tree level (e.g., compress 8 syndromes
into 1). For higher tree levels, the same syndrome digestion
algorithm is applied recursively over the parent values of
the previous level, until one final digest is generated (i.e.,
the root of the tree). This root is then stored within the TCB,
and this is sufficient to assert the integrity of the leaves in
each path traversal of the tree. An important benefit of our
construction is that it can leverage redundant encryption
cores, as it is inherently parallelizable, while at the same
time can enforce the relative order of tree leaves.
Rationale: Without loss of generality, we first assume that
in each tree level we want to digest L blinded syndromes
(referred to as S1, S2, . . . , SL) into a single digest D. Our
primary goal at this point is to prevent adversaries from
controlling the input values in a meaningful way for them
(i.e., be able to predict how the digest D will be affected by
changing an input syndrome Si). This objective is accom-
plished by encrypting each input syndrome using a secure
block cipher under a secret key: since block ciphers are
pseudo-random permutations, adversaries will be unable to
predict how input syndromes (under their control) are trans-
formed before being digested into D. At this point, since
encryption transforms the inputs in an unpredictable way,
we can accumulate them as E(S1)+E(S2)+ · · ·+E(SL) and
efficiently digest the latter using a fast Mersenne reduction.

The resulting residue is unpredictable and its computa-
tion parallelizable, but it cannot be securely stored outside
the TCB yet, as it is easily extendable if an adversary has
direct access to it.11 Hence, adapting the digest-then-mask
paradigm as in the construction of Section 6.1.2, we further
encrypt this intermediate residue (Alg. 6, step 7), before
returning the final digest D to untrusted or eavesdroppable
memory. In effect, enclosing the digest operation (i.e., addi-
tion moduloMp) between two Simon encryptions inside the
TCB creates a virtual black box for adversaries, at it prevents
predicting how D is affected by altering the inputs Si, as
well as predicting the intermediate residue by observing
both inputs and outputs.
Commutativity Protection: A desired feature of our con-
struction is the ability to encrypt inputs independently (i.e.,
there is no cascading requirement), which allows paral-
lelization during computation of the intermediate residue.
Without additional care, however, adversaries may cause
collisions to that residue (and eventually to the resulting
digest D) by judiciously permuting the order of the input
syndromes Si. Specifically, since the inputs are digested us-
ing addition moduloMp, which is a commutative operation,
their relative order is not enforced in the residue. To prevent
these unwanted collisions, it is necessary to ensure that a
different intermediate residue is computed if this relative
order is modified. Thus, whether we are processing the
lowest level of the Simon Tree (i.e., the tree leaves), or
intermediate levels, we must concatenate unique padding bits
to each input syndrome Si, before encrypting it as an input
block (Alg. 6, steps 3 & 4). Provided that the padding bits
added to each Si differ by at least 1 bit from those added to

11. This intermediate residue is only prefix-free secure, so without
protection, it is theoretically vulnerable to extension attacks (e.g., [52]).

Algorithm 6 Simon Tree Digestion and Update (one level)
Input: S = (S1, S2, . . . , SL), Dold, idx, Snew,KSimon,Mp

Output: (Updated) Digest D
1: procedure SIMONDIGEST(S,KSimon,Mp)
2: for each Si in S do
3: Ei ← E(KSimon,Pad(i)||Si) . All in parallel
4: return Dtmp = E1 + E2 + · · ·+ EL mod Mp

5: procedure GENERATE(S,KSimon,Mp)
6: Dtmp ← SIMONDIGEST(S,KSimon,Mp)
7: return D = E(KSimon, Dtmp) & Mp . Keep p LSBs
8: procedure UPDATE(S,Dold, idx, Snew,KSimon,Mp)
9: Dtmp ← SIMONDIGEST(S,KSimon,Mp)

10: Eold ← E(KSimon,Pad(idx)||Sidx) . Done in 3:
11: Enew ← E(KSimon,Pad(idx)||Snew) . Parallel to 3:
12: Dnew ← Dtmp − Eold + Enew mod Mp

13: if Dold 6= E(KSimon, Dtmp) then return ⊥ . Error
14: else return Dupd = E(KSimon, Dnew) & Mp

the other L−1 syndromes, permuting the order of the inputs
would match each syndrome with different padding bits; as
a result, due to the diffusion properties of the Simon block
cipher, significantly different encrypted syndrome blocks
would be accumulated and the final digest D would also be
different. Using this improvement, the output of SIMONDI-
GEST process is effectively a (multi-query) universal digest
of L syndromes, based on the Simon cipher.
Verification & Update: For each tree level, we can apply
the aforementioned digestion process to groups of L syn-
dromes, and recursively to higher levels, in order to verify
the integrity and freshness of all syndromes up to the tree
root. All digestion operations take place within the TCB,
where the tree root is also stored; however, all digests at
any level between the leaves and the root can be stored in
regular memory without risk, as any malicious modification
will be detected with high probability by verifying the corre-
sponding path up to the root. When a single leaf syndrome
Si needs to be verified, the TCB loads from memory all
leaf syndromes that share the same immediate parent and
verifies that the parent digest is correct. The same step is
then repeated to the L parents with a common grandparent,
which ultimately reduces the verification of a leaf to the
verification of the root.

Likewise, updating a leaf syndrome requires verifying
first, and then overwriting, each parent digest across the
path connecting that leaf to the root. Our construction is
beneficial as it allows updating and verifying a tree level at
the same time, minimizing the cost of updates. In particular,
since the intermediate residue is a modular addition, it can
be easily updated with just one modular subtraction of the
outdated block and one modular addition of the updated
block. Fig. 4 presents a block diagram of our construction,
while the digest generation and updating procedures (for
one tree level) are summarized in Alg. 6.

6.2.2 Implementation Remarks
One important aspect in the implementation of Simon Trees
is the time overhead associated with digest generation and
updating, as these operations are recursive over multiple
tree levels. Traversing all levels of our tree construction
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Fig. 4. Block diagram of one level in our Simon Tree construction.

incurs a logarithmic overhead on the number of leaves (each
corresponding to a blinded syndrome protecting one Paillier
ciphertext), and this is consistent with our goal to avoid
linear overheads. For example, if L = 2 syndromes are
used as inputs for each digest D, the recursions required to
traverse all tree levels are equal to the number of bits needed
for addressing each (X,Xbsndr, ctraddr) tuple. Moreover,
leveraging the inherent parallelization in Step 3 of Alg. 6,
we can digest L = 2B syndromes at once (using redundant
encryption cores), while the required number of recursions
is dlogL V e, if V is the total number of addressable 3-tuples.
In effect, by increasing B we can reduce the total number
of non-parallelizable encryptions across all tree levels, trad-
ing hardware resources for parallelization. For instance, if
V = 232 and L = 23 parallel encryption cores are available,
we can update a tree leaf within d32/3e = 11 recursions.

Another vital concern is the selection of a Mersenne
prime Mp = 2p − 1, which should be compatible with
the available block sizes in the Simon cipher family, and
allow adequate room for unique padding bits. For example,
if the number of input syndromes is L = 8 = 23, at least
8 unique padding values are required, or a minimum of 3
padding bits. Then, in case the block length is 64 bits and
we use Mp = M61 (i.e., the blinded syndromes are 61 bits
long), the concatenation of the syndrome with its padding
matches the block size exactly. In general, we require that
p + B ≤ BlkSize to ensure each padding is unique; if this
constraint is violated, the next available block size should be
used. Overall, the block size determines the time overhead
for digesting L syndromes, as the latter corresponds to the
cost of two consecutive Simon encryptions in addition to
L+1 or L+3 modular additions for generating or updating
digests.12

7 EXPERIMENTAL EVALUATION

We evaluated the effectiveness and efficiency of our error
detection framework using Monte Carlo simulations in
Python 2.7, as well as by synthesizing Verilog implemen-
tations of the proposed primitives with Xilinx XST 14.7.
All simulations were executed on two 8-core Xeon E5-2650

12. We assume L+1 parallel encryption cores are available for Steps
3 & 11 in Alg. 6 (equivalent to one encryption), and two of those L+ 1
cores are reused in parallel for Steps 13 & 14 (equivalent to a second
encryption). All L+1 cores can share the same key schedule hardware.

TABLE 2
Error Detection Probabilities for Different Mersenne Primes

Mersenne
Prime

Error Sources
SEU MBU ALU Malicious

M19 100% 100% 99.999809700% —
M31 100% 100% 99.999999951% —
M61 100% 100% 1− 2−61 1− 2−61

M107 100% 100% 1− 2−107 1− 2−107

servers, with 64GB RAM, running 16 Python threads at
2.00GHz each, while the XST target was a Kintex xc7k160t-
3. As already mentioned in our threat model (Section 2),
we focus on detecting (a) random errors at any round of
a homomorphic ALU, (b) soft errors in encrypted memory
(SEUs and MBUs as in [32]), and (c) malicious modifications
in encrypted memory (assuming a tamper-proof TCB). The
basic primitives for detecting random errors in memories
and ALUs are a fast Mersenne reduction module and a
small modular multiplier for syndromes. To add protection
against malicious memory modifications (Section 6), our
required TCB comprises the blinded exponential syndrome
unit (Fig. 3), the Simon tree unit (Fig. 4), protected storage
for secret keys (Table 1) and the Simon tree root, and well
the error-detecting ALU (illustrated in Fig. 1). In the fol-
lowing paragraphs, we present the corresponding detection
probabilities and RTL implementation overheads.

7.1 Error Detection Probabilities

Random Errors (ALU & Memory): In the ALU column of
Table 2, we present the detection probabilities for random
errors on any round of a homomorphic ALU operation
or during syndrome verification (Alg. 2), using different
Mersenne primes (which define the syndrome bit length).
For M19 and M31, we report the detection probabilities after
about 1010 Monte Carlo simulations in Python, which is con-
sistent with the theoretically expected value of (1 −M−1p ).
For M61 and M107 we report the theoretically expected
values, as more than 1018 simulations would have been
required to generate even one escaped fault. Regarding
memory soft errors, the SEU and MBU columns of the
same Table illustrate the complete coverage achieved by our
methodology for single bit flips and clustered faults of up
to 4 bits (as in [32]), following the analysis in Section 5.3.
Malicious Modifications (Memory): Our memory error
detection methodology against active adversaries requires
Mersenne primes of adequate bit length to render brute
force attacks infeasible. For that matter, the protection of-
fered by M19 and M31 is insufficient for the computational
power of modern computers. Conversely, forM61 andM107,
the corresponding exponential syndrome keys are 61 and
107 bits (and the matching Simon encryption keys are 96
and 128 bits respectively), so it is intractable for adversaries
to brute force these keys and generate malicious syndromes.
For these Mersenne primes, the theoretical error detection
probability is (1 − 2−61) and (1 − 2−107), as shown in the
last column of Table 2.
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Fig. 5. Area overheads in terms of FPGA Slice LUTs (bottom bars) and Slice Registers (top stacked bars) for our implemented primitives.

7.2 Area & Runtime Overheads

To evaluate the runtime and area overheads of our proposed
methodology, we implemented all associated primitives in
Verilog HDL, and compared them to a typical fault de-
tection approach of resource duplication. Specifically, we
implemented (a) fast modular reduction cores for different
input sizes and Mersenne primes (Alg. 1), (b) primary and
secondary modular multiplication units (Step 2 & 6 of Alg.
2), (c) Simon encryption cores variants (with key schedules)
used for syndrome blinding and Simon trees (Alg. 3 &
6), (d) a parallel modular exponentiation ladder (Alg. 4),
(e) a universal digest module based on Horner’s rule for
evaluating polynomials (Alg. 5), and (f) high-radix multi-
cycle multiplication variants to handle each exponentiation
step, while reducing the critical paths of Alg. 4. Without loss
of generality, we focus on Mersenne primes M19 and M31

(which are adequate for random error detection in the ALU
and memory), as well as M61 and M107, which are good
matches for both random and malicious error detection.
Area: In Fig. 5, we report the area overheads of our im-
plementation in terms of FPGA Slice registers (darker bars
stacked on top of lighter bars) and Slice LUTs (lighter bars
below the darker ones). In the left subplot of Fig. 5, we
compare the area of the fast Mersenne reduction module for
2048 bit arguments and four different primes Mp, against
the area of a duplicated modular multiplication ALU for
2048 bit arguments (“DPL ALU”) and our proposed error-
detecting ALU (Fig. 1). Recall that error detection increases
the area of the primary ALU with one fast reduction unit
and one small syndrome multiplier; as our results indicate
for M19 and M31, the ALU area is increased about 20%
to enable random error detection (attributed to the cost
of fast reductions and syndrome multiplication), which is
five times smaller compared to the 100% increase in case of
resource duplication.

In the center subplot of Fig. 5, we report the total area
overhead of our blinded exponential syndrome unit (Fig.
3) for primes M61 and M107, and the individual over-
heads of our universal digest module and three different
instantiations of our exponentiation ladder with varying
multiplication steps (traditional 1-step, and high-radix 4-
or 5-step). Since exponentiation requires multiplications of
61 ·61 or 107 ·107 bit numbers, multiple steps help reducing
the critical paths. Our results indicate that increasing the
multiplication steps modestly increases area overheads (in
an effort to trade area and execution steps for shorter clock
periods), while the universal digest and exponentiation
ladder modules dominate the area cost of the blinding unit.
Moreover, in the right subplot, we compare the area cost of a
single Simon encryption module and a single key schedule,

(a) (b)
Fig. 6. (a) Total area overhead of our TCB for different Mp primes.
(b) Comparison of relative critical paths for our primary ALU, universal
digest, and ladder exponentiation units (for varying multiplication steps).

to the cost of our Simon Tree construction for digesting
L = 8 syndromes in parallel using redundant encryption
cores and a common key schedule (as in Fig. 4), for the
64/96 and 128/128 block cipher variants.

The total area overhead of our entire TCB is summarized
in Fig. 6a. For M61, our results indicate that the TCB cost
is about 13.5% less than the cost of a duplicated ALU,
which does not offer any memory protection against active
adversaries; in case of M107, this cost is merely 3.0% more
than the duplicated ALU cost. Hence, the additional area to
defend against our extended threat model is about the same
as one unprotected 2048-bit modular multiplier.
Critical Path: An important observation is that the modular
exponentiation ladder could benefit from high-radix multi-
ple step multiplication, in order to decrease its critical path.
For that matter, in Fig. 6b we perform a relative comparison
of the critical path of our universal digest and our ladder
exponentiation (for a traditional single step, as well as 4- and
5-step high-radix multiplication cores), against the critical
path of our primary ALU. Our results for M61 show that the
shortest path is achieved using a 5-step multiplier (which,
however, incurs larger area and runtime overheads). Yet,
our multi-step optimization is less effective for M107, where
the critical path using a single step multiplication is almost
the same as using a 5-step multiplication. In all cases, both
our 61-bit and 107-bit ladder exponentiations, as well as our
Horner’s rule universal digests, have shorter critical paths
compared to our primary ALU operation.
Clock Cycles: Based on our HDL simulations, we also com-
pare the runtime overhead of our primitive, depending on
the selection of Mersenne prime Mp. In Fig. 7, we report the
required cycles for digesting one level of a Simon tree and
computing one blinded exponential syndrome (with 1-step,
4-step and 5-step multiplications respectively), compared
to one error detecting ALU operation and one duplicated
ALU operation. For M19 and M31, we only report the ALU
runtime overheads, as these primes are not adequately large
to support our malicious error detection primitives. In case
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Fig. 7. Runtime overhead (clock cycles) for digesting 1 Simon Tree
level, computing a blinded syndrome (with 1-step, 4-step or 5-step
multiplication) and completing a 2048-bit error detecting ALU operation,
compared against a duplicated ALU operation of the same bitsize.

of malicious memory errors, our simulations show that the
cost of computing a blinded exponential syndrome is com-
pletely masked by one primary ALU operation, while the
small overhead of digesting one level of a Simon Tree allows
pipelining the evaluation of multiple levels in parallel to
ALU operations. Moreover, compared to a duplicated ALU,
our results indicate that one error detecting ALU operation
requires between 1.2% and 5.5% more cycles (depending on
Mp), due to the additional reduction in Step 3 of Alg. 2.

8 RELATED WORK

In the area of reliable computation, several error detection
methods have been proposed in the past. Traditional ap-
proaches, such as resource duplication,M out-ofN majority
vote (e.g. triple modular redundancy) or time redundancy,
can be effective, but incur undesirable area or delay over-
heads. In addition, error codes, such as Berger, Bose-Lin,
BCH, Reed-Muller, Hamming, or Cyclic Redundancy may
provide robust detection of random memory errors [53],
[54], but are incompatible with encrypted computation by
their construction: they either cannot support homomor-
phic operations like modular multiplication, or can only
be ported to multiplication over specific fields like binary
extension fields (e.g. [55]), which is not generally the case in
encrypted computation. Moreover, random memory errors
can be mitigated using ECC memory modules, where pro-
tections are implemented within memory ICs. Still, consid-
ering that such memories typically use 8 parity bits for every
64 data bits [45], storage efficiency can be lower, compared
to the practical syndrome sizes in this work.

In cryptographic applications, error detection is possible
using integrity primitives, such as message authentication
codes (MACs) or digital signatures [25], and encrypted
values can be protected by performing either MAC-then-
Encrypt or Encrypt-then-MAC operations [56]. Notably, these
methods rely on storage hungry and time-consuming hash-
ing operations, especially when hash chaining is required for
values in the order of thousand bits. Our methodology, on
the other hand, leverages efficient and parallelizable digests.
Furthermore, since hashing is not homomorphic, directly
porting these methods to encrypted computation would
require either decrypting and re-encrypting arguments af-
ter HE operations (for MAC-then-Encrypt) or expensive
rehashing (for Encrypt-then-MAC).

Memory integrity against malicious modifications (e.g.,
replay attacks) can be achieved efficiently using hash
tree constructions. In [57], the authors introduce “Bonsai”
Merkle trees, which have compressed sizes, as it is sufficient
to protect short counter values instead of longer MACs.

Nevertheless, this approach leverages symmetric encryption
for protecting memory values, and both the ciphertexts and
the MACs are not homomorphic by construction. Likewise,
“skewed” Merkle trees are proposed in [58], in an effort to
reduce the paths between tree nodes for frequently used
memory blocks and the tree root; in encrypted computation,
however, memory is randomly permuted (e.g., [44]) and it
cannot be predicted which memory locations will be used
more or less frequently.

With respect to efficient modulo operations, the authors
of [42], propose an improved hardware implementation of
modular reductions that requires O(n − m) steps, where
n is the argument size and m is the modulus size in bits.
Their approach is more attractive when the modulus size in
very big, while in this work we purposefully select relatively
small Mersenne primes, to reduce the storage requirements
for syndromes. Furthermore, the authors of [59] discuss
improved reduction algorithms for arbitrary moduli, but
their approach uses lookup tables that require continuous
memory accesses and may leak side channel information
in addition to affecting performance. In this work, our
reductions are optimized, since we do not require arbitrary
moduli (except in the primary HE ALU).

Protecting modular multiplication ALUs using residue
numbering has also been explored in the literature, in the
context of fault injection attacks. In [60], the authors instanti-
ate an algorithm for RNS-based Montgomery multiplication
that enables detection of single faults, while preventing
private key extraction attacks in cryptosystem instantiations
through leak resistant arithmetic. Their main security objec-
tive is to prevent side channel leakage, while our primary
goal in this work is detecting active integrity attacks in
encrypted memory, as well as random errors in the ALU.

9 CONCLUDING REMARKS

In this work, we introduce an efficient framework that
provides error detection in additive encrypted computation
ALUs and memories. Our contribution leverages residue
numbering properties and fast reductions modulo Mersenne
primes, to provide random error detection rates of at least
99.999% in homomorphic ALUs, and 100% coverage for
single bit-flips and up to four clustered faults in encrypted
memories. Moreover, we introduce two memory integrity
primitives, namely blinded exponential syndromes and
Simon Trees, which support parallelization and enable the
detection of a wide range of malicious modifications in en-
crypted memory, provided that a TCB is present for storing
secret information and computing integrity metadata. In our
experiments, we measured the area and runtime overheads
of HDL implementations of our primitives for an FPGA
target, and compared our approach against a resource du-
plication strategy. Our results indicate a runtime overhead
between 1.2% and 5.5% for ALU operations, which renders
this approach a suitable alternative for generic VLSI fault
detection methods ported to encrypted computation.

APPENDIX A
THE PAILLIER CRYPTOSYSTEM

The Paillier cryptosystem is one of the first efficient ho-
momorphic encryption schemes that supports the addition
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operation [23]. The HE scheme is mathematically based on
the decisional composite residuosity assumption, which states
that given a composite number n and an integer z, it is hard
to decide whether there exists y such that:

z ≡ yn (mod n2). (23)

The Paillier scheme is categorized as a public key crypto-
graphic scheme and formally is defined as follows: let p
and q be two large primes of equivalent length, randomly
and independently chosen of each other. Let n = pq be the
product of these primes and λ = lcm(p − 1, q − 1); the bit
size of n is the security parameter of the cryptosystem. Let g
be a random integer in Z∗n2 so that µ = (L(gλ (mod n2)))−1

(mod n) exists, where −1 power refers to the modular
multiplicative inverse and L(x) = x−1

n . The public key is
(n, g) and the private key is (λ, µ).

Encryption is defined as follows: let m be the message to
be encrypted, with m in Zn, and let r be a random integer
in Z∗n. Then, the encryption function of a message m is:

Enc[m] = gmrn (mod n2) (24)

and the decryption function of a ciphertext c is:

Dec[c] = L(cλ (mod n2)) ∗ µ (mod n). (25)

The homomorphism of this scheme is defined as
Dec[Enc[m1] ∗ Enc[m2] (mod n2)] = m1 + m2 (mod n),
which means that the decryption of the modular multipli-
cation result of the encryptions of two messages equals the
modular addition of the two messages. This result is signif-
icant, since this can be the basis for encrypted computation
(e.g. [11], [22]).

Paillier Cryptosystem with Multiple Primes
In case more than two prime numbers are used in the
calculation of modulus n, the key generation is modified
as follows:

Let {p1, p2, · · · , pk} a set of k prime numbers, where
at least two of them are sufficiently large (of equivalent
length), chosen randomly and independently of each other.
Then the modulus would be n =

∏
pi with 1 ≤ i ≤ k, and

λ would be equal to lcm(p1, p2, · · · , pk).
The security of the construction holds, since it is com-

putationally infeasible to calculate λ without knowledge
of the factorization of n. Indeed, since at least two of the
prime factors of n are large and random, factorization of n
is assumed to be an intractable problem.
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